1. Computer program power consumption
    A programming language that “minimizes” power consumption through minimal interconnect usage (e.g. memory calls).
  2. Food sourcing power consumption
    Farmland supply to cities: how to optimize land usage? What part of the produce can be made local e.g. made at the consumer or turned to hydroponic and its culture brought within the city itself?

Both these problems require a grammar of solutions, rather than a single instance, due to the diversity of the operating/boundary conditions that are encountered.
As such, I don’t think that a “proof of correctness” for either can be hoped for, but perhaps a number of heuristic checks might prove the point.
The former is addressed by a single technology, whereas the second requires a diverse array of strategies.

General considerations

  • Area and land usage
    Arbitrary rearrangement of the resources is not trivial: CPUs are designed with CAD tools that favor periodicity and reuse, and farmland restricts supply due to physiological productivity/rest cycles.
  • Time and flow
    Time plays a part as well: the edges in these supply nets do not handle a constant flow. In the first case, storage is regulated by registers, queues and stacks, whereas in the second, the flowing entities are subject to seasonal variation, degrade with time etc.

This framework is intentionally generic in order to highlight similarities, and it is of course a work in progress.
Both these problems in fact have broad political implications, which leaves plenty of space for many juicy discussions. Looking forward.

Literature

  1. An article from the NYT: A Balance Between the Factory and the Local Farm (Feb. 2010) highlights both the high costs of local (i.e. small-scale) green production, citing The 64$ Tomato, and the related climatic issues (e.g. cultivation on terrain located in the snow belt).
    The article closes with “Localism is difficult to scale up enough to feed a whole country in any season. But on the other extreme are the mammoth food factories in the United States. Here, frequent E. coli and salmonella bacteria outbreaks […] may be a case of a manufacturing system that has grown too fast or too large to be managed well.
    Somewhere, there is a happy medium.” — an optimum, if you will.

Side questions

  • Why do large-scale economics “work better”? i.e. have a larger monetary efficiency, which drives down the prices for the end user? More effective supply chain, waste minimization, minimization of downtime …
Advertisements

A few days ago, mid-July, a fish die-off took place in the Venice lagoon [IT].

The authorities [IT] isolated the high oxygen level in water as the culprit, in turn due to an abnormally large seaweed growth (which has been attributed in part to the anomalous climate pattern since the spring: hot and rainy).
It is believed that certain non-indigenous algal varieties, brought to the lagoon on the hulls of cargo ships are thriving in the local ecosystem (yet another game of blame-the-immigrant?).
I meant to educate myself on the details for a while now but never found the time.

Seaweed or not, the environmental shock is propagating up the food chain.
Seagulls are already looking miserable, and very few are flying, some noticed.

From a very utilitarian and human-centric point of view, the locals don’t feed on seagull meat, and Venice as a whole has a rather open food system (most of it is imported, as there is precious little agriculture on a couple of the lagoon islands, certainly not enough to support the whole population) but these facts leave me pondering.

However other species might be relying on the ones presently in danger, as predator-prey systems [EN] are in a feedback relationship (a concept which our customer-supermarket culture has alienated us from).

I certainly hope we are not witnessing the start of a local environmental collapse.
The Venice lagoon is a unique pool of biodiversity, and its extinction would mean yet another shame on humankind’s record.